Search results for "Irganox 1076"
showing 3 items of 3 documents
Monte Carlo simulation of energy absorbed in phenolic ESR dosimeters added with gadolinium exposed to thermal, epithermal and fast neutrons
2017
Abstract In this work analyses of the energy released per unit mass in phenolic compound exposed to neutron beams were performed with the aim of predicting the increase in dose achievable by addition of gadolinium (Gd) inside the pellets. In particular, Monte Carlo (MC) simulations were carried out for IRGANOX® 1076 phenolic compound irradiated with neutron beams with different energy spectra at various depths inside a water phantom. The addition of gadolinium increases sensitivity of phenolic ESR (electron spin resonance) dosimeters to neutrons thanks to the high gadolinium cross section for neutron capture and to the large number of secondary particles (mainly Auger and internal conversio…
Characterization of phenolic pellets for ESR dosimetry in photon beam radiotherapy
2017
This work deals with the dosimetric features of a particular phenolic compound (IRGANOX 1076 ® ) for dosimetry of clinical photon beams by using electron spin resonance (ESR) spectroscopy. After the optimization of the ESR readout parameters (namely modulation amplitude and microwave power) to maximise the signal without excessive spectrum distortions, basic dosimetric properties of laboratory-made phenolic dosimeters in pellet form, such as reproducibility, dose–response, sensitivity, linearity and dose rate dependence were investigated. The dosimeters were tested by measuring the depth dose profile of a 6 MV photon beam. A satisfactory intra-batch reproducibility of the ESR signal of the …
Sviluppo e Applicazioni di nuovi materiali per la dosimetria delle radiazioni ionizzanti
The Research Activities carried out during the Three-year International PhD Course in Applied Physics of the candidate Salvatore Gallo had two main topics related to dosimetry of ionizing radiations (IR): the analysis of 3D gel dosimeters and the analysis of solid state dosimeters through electron spin resonance. Both these activities are focused on a careful study of new materials for the IR Dosimetry, both in terms of physical characterization of these new materials and of the optimization of readout methods for dosimetric measurements. The study performed through various techniques such as UV-Vis absorption spectroscopy, NMR Relaxometry, Magnetic Resonance Imaging (MRI) and Electron Spin…